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Three-point bending analysis of doubly clamped silicon nanowire beams;
Young’s modulus, initial stress, and crystal orientation

Y. E. Yaish,a) Y. Calahorra, O. Shtempluck, and V. Kotchetkov
Department of Electrical Engineering, Technion, Haifa 32000, Israel

(Received 1 January 2015; accepted 14 April 2015; published online 30 April 2015)

A non-linear model is introduced describing the force-deflection relation of doubly clamped beams,

including initial stress. Several approximations for the exact model are developed and compared,

revealing the importance of considering the initial stress during 3-point bending measurements

analysis. A novel approximation is found to be better than others, and both the exact model and

this approximation are in perfect agreement with finite element simulations. A brief experimental

example of silicon nanowires is presented in which the Young’s modulus, the initial stress, and the

crystallographic growth orientation are extracted by 3-point bending analysis. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919017]

I. INTRODUCTION

Many materials can be grown or fabricated to the shape

of beams or nanowires. Such nanostructures are considered

building blocks of future electronics, optics, and mechan-

ics.1–3 Various applications have been suggested and

realized, such as fast electrical devices, light emitting diodes,

single mode lasers, nanoelectromechanical systems (NEMS),

and chemical and biological sensors.4–13 Among the various

nanowires grown from different materials, an attractive

candidate is silicon nanowire (SiNW), whose mechanical

properties are of great importance, for example, for NEMS

and piezoresistive applications.14 Understanding the me-

chanical properties of nanowires in general, and of SiNWs in

particular, and the ability to control and quantify them, are

of crucial importance for successful realization of such

applications.

The ability to measure and modify the initial stress of

electronic devices (sometimes referred to as residual tension,

when dealing with post-processing effects) is an important

and exciting possibility due to piezoresistive effects that can

improve device properties. Indeed, strain engineering is

increasingly used nowadays in the microelectronics indus-

try,15–17 and SiNWs are promising candidates. SiNWs have,

for example, unusually high piezoresistive coefficients, as

reported by He and Yang,14 thus increasing the motivation

for NW strain engineering applications.

To quantify the mechanical properties of nanowires,

different measurement schemes have been introduced, includ-

ing scanning electron microscopy (SEM) and transmission

electron microscopy (TEM) methods,18–24 nanoindentation

techniques,25,26 dynamic resonance measurements,8,27 and

atomic force microscopy (AFM) based 3-point bending

experimrnts.27–38 The advantage of the last two methods is

that they enable measurements to be performed directly on

fabricated mechanical devices, such as doubly clamped

beams, thus taking process influences into consideration.

A doubly clamped beam may develop residual stresses

during clamping or due to subsequent processing, or it may

accommodate inherent initial stresses, all of which may

affect its electronic properties. In this study, a new approach

to the analysis of 3-point bending measurements of doubly

clamped beams is introduced that takes initial stress into

account. In addition to the analytical solution, several

approximations are derived and compared, and one approxi-

mation is found to be very accurate and easy to employ. An

example of this analysis is given for doubly clamped SiNW

beams before and after rapid thermal annealing (RTA) treat-

ment. Results show that RTA modifies the initial stress along

the beam and crystal growth orientation of the studied wires

may be extracted using the proposed analysis.

II. THEORETICAL ANALYSIS

Studies reported in current literature focus predomi-

nantly on the extraction of the Young’s modulus of nano-

beams. Results obtained for SiNWs are still inconclusive,

and a widely accepted model for the Young’s modulus of

SiNWs has yet to be introduced. For NWs made of different

materials, values similar to bulk values have been

reported,27,30,32,36,37 as well as values that increase33,35 as

the NW diameter decreases and values that decrease39,40 as

the thickness of Si nanocantilevers decreases.

Atomistic simulations fail to explain such variations in

the Young’s modulus of mechanical systems with character-

istic thicknesses greater than several nm.41–43 Such effects

are usually attributed to surface elasticity33,44 and NW com-

posite structure.39,45,46 The composite structure of SiNWs

consists of a Si core and a SiO2 shell. The flexural rigidity of

a core-shell system is given by45

Eef f Ief f ¼ EcoreIcore þ EshellIshell; (1)

where I is the area moment of inertia which is pr4=4 for a

cylinder and pðr4
outer � r4

innerÞ=4 for a cylindrical shell, and E
is the relevant Young’s modulus. Thus, the following rela-

tionship is found for the effective modulus46a)yuvaly@ee.technion.ac.il
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Eef f ¼ Eshell þ Ecore � Eshellð Þ dcore

dtotal

� �4

; (2)

where Eshell¼ 70 GPa,36 and dcore and dtotal are, respectively,

the NW core diameter and total diameter.

In continuous mechanics, the basic differential equation

that determines the equilibrium position of a doubly clamped

beam of length L subjected to point force, Fẑ, at its center is

given by47

EI
@4u

@x4
�T

@2u

@x2
¼ F

2
�d xð Þþ 2d x�L=2ð Þ� d x�Lð Þ
� �

; (3)

where u(x) is the transversal displacement in the z direction

and x is the beam longitudinal axis. The first term originates

from the beam bending and the second term is attributed to

initial tension and stretching along the axial direction of the

beam. The overall tension is given by

T ¼ T0 þ
ES

2Lrelx

ðL

0

@u

@x

� �2

dx; (4)

where T0 is the residual or initial tension, Lrelx is the relaxed

length of the beam (with zero strain), and L is the distance

between the beam’s two clamping points. The relaxed beam

length may be smaller or larger than L, depending on

whether the initial tension is positive or negative, respec-

tively. A simple calculation shows, however, that Lrelx=L
¼ E=ðEþ r0Þ, where r0 ¼ T0=S, and S ¼ pR2 is the circular

beam cross section. In many experiments conducted using

the 3-point bending method, the Young’s modulus is signifi-

cantly larger than r0 (by at least several hundred Pa), thus

rendering the following approximation, Lrelx � L, com-

pletely justified.

Integrating Eq. (3) with respect to x, assuming T> 0 for

the forthcoming analysis, yields

L2
0

@3u

@x3
� @u

@x
¼ � F

2T
; (5)

where L2
0 ¼ EI=T. Using the common boundary conditions

for doubly clamped beams (uð0Þ ¼ uðLÞ ¼ u0ð0Þ
¼ u0ðLÞ ¼ 0), the following analytical solution is obtained:

u xð Þ ¼ F

2T

1

cosh L=4L0ð Þ xcosh L=4L0ð Þð

�L0 sinh L=4L0ð Þ � sinh L� 4xð Þ=4L0

� �� ��
: (6)

At x ¼ L=2, Eq. (6) reduces to

u L=2ð Þ ¼ F

2T

1

cosh L=4L0ð Þ
� L=2cosh L=4L0ð Þ � 2L0sinh L=4L0ð Þð Þ: (7)

Plugging Eq. (6) back into Eq. (4) results in

T ¼ T0 þ
ESF2

16T2

1

cosh2 L=4L0ð Þ

� 2þ cosh L=2L0ð Þ � 6
L0

L
sinh L=2L0ð Þ

� �
: (8)

For small deflections and low T0, Eq. (7) may be expanded

by powers of T to obtain

u L=2ð Þ � FL3

192EI
1� L2T

40EI
þ 17

26880

L2T

EI

� �2
 !

: (9)

Two main observations can be made from this last equation.

First, we see that the relevant small parameter of the expan-

sion is a ¼ L2T
EI ¼ L

L0

� �2
, which is a measure of the ratio

between the stretching and bending contributions to the

beam deflection. Second, rewriting Eq. (9) as

Fext � F ¼ 192EI

L3
u L=2ð Þf að Þ (10)

yields the well known linear approximation of beam deflec-

tions for f ðaÞ ¼ 1. This relationship is commonly used in

the literature to extract the beam’s Young’s modulus.30,33–36

The two main shortcomings of the linear model is that it is

applicable only for deflections smaller than the beam’s

thickness and that it is extremely sensitive to initial stress,

as discussed below. For deflections that are greater or com-

parable to the beam’s thickness (referred to as large deflec-

tions), tensile forces due to stretching become significant

and the force-deflection (F-D) curve deviates substantially

from linearity. This can be described by adding a cubic term

to the equation, resulting in a rough approximation of the

complete model.29

It was only in 2006 that Heidelberg et al.29 introduced a

model that consisted of a Pad�e approximation of the analyti-

cal solution of the beam equation. This model, which pro-

duced a F-D curve for the entire range of deflections, was

further used only in subsequent works by co-workers.32,37 In

this study, we follow Heidelberg’s analysis and introduce an

exact set of equations and relevant approximations for the

case of initial stresses.

The first step is to find f ðaÞ. Plugging Eq. (7) into Eq.

(10) and eliminating F results in

f að Þ ¼ a

48� 192 tanh
ffiffiffi
a
p

=4
� �
ffiffiffi
a
p

: (11)

Inserting Eqs. (10) and (11) into Eq. (8) yields

a� L2T0

EI

� �
cosh2

ffiffiffi
a
p

=4
� �

2þ cosh
ffiffiffi
a
p

=2
� �

� 6sinh
ffiffiffi
a
p

=2
� �

=
ffiffiffi
a
p

� 1� 4tanh
ffiffiffi
a
p

=4
� �

=
ffiffiffi
a
p� �2 ¼ S

I
u2 L=2ð Þ: (12)

The set of Eqs. (10) and (12) may be solved self-

consistently, for a given set of F-D data, to determine the

two unknowns, E, and T0. The convergence of this procedure

is very slow, and if the residual tension is negative, which is

quite common, the results obtained might be erroneous,

depending on the initial guess for the two unknown varia-

bles. To facilitate this procedure and to develop better intu-

ition of the beam deflections, different approximations

should be applied and tested.

164311-2 Yaish et al. J. Appl. Phys. 117, 164311 (2015)
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If a0 ¼ L2T0=EI < 1 and � ¼ u2S=I < 1, Eq. (12) may

be expanded by powers of T0 and u to obtain

a� L2T0

EI

� �
5

12
’ S

I
u2 ¼ �: (13)

Solving this equation for a yields

a ’ 12

5
�þ L2T0

EI
: (14)

When the residual tension increases, and u is very small, the

following condition must be fulfilled in order for the left side

of Eq. (12) to be very small:

a! L2T0

EI
: (15)

When u increases and its contribution to T becomes more

significant, a increases as well, and the term L2T0=EI in Eq.

(12) becomes less important. In this situation, both a high

and a low limits are obtained29

a ¼
12

5
�� 3

875
�2; � < 1

2�; � > 1:

8<
: (16)

In the absence of residual tension, Heidelberg et al.29

performed a Pad�e approximation for a, based on the two lim-

iting values presented in Eq. (16). When T0 6¼ 0, the results

of Eqs. (14)–(16) may be combined, yielding the following

approximation for a:

a ’ L2T0

EI
þ 6� 140þ �ð Þ

350þ 3�
� aapp: (17)

To obtain the leading terms in the expansion of the F-D

curve, we use the approximation for f ðaÞ for small a

f að Þ � 1þ a
40
� a2

134400
(18)

together with Eq. (17) to find the following relationship:

f að Þ � 1þ 1

40

L2T0

EI
þ 3

50
�� 1

134400

L2T0

EI

� �2

� 9

70000
�2 � 1

28000

L2T0

EI
�: (19)

Equation (19) presents the exact analytical solution, based

on the Taylor expansion, of the set of Eqs. (10) and (12) up

to the second order terms in the series. For an F-D analysis

that is based on the linear approximation, Eq. (10) (the lead-

ing term) becomes

F ¼ 192EI

L3
u L=2ð Þ 1þ 1

40

L2T0

EI

� �
: (20)

Unlike the negligible contribution of T0 to the beam length

(r0=E� 1, thus L � Lrelx), the term

L2T0

EI
¼ r0

E

4L2

R2
(21)

includes the multiplication factor ð2L=RÞ2, which increases

as the aspect ratio of beam length to beam radius increases.

For typical beams, such as SiNWs, lengths are in the several

microns range, and radii are in the tens of nanometers range:

thus, the squared aspect ratio contributes a factor of 103–104

to the original r0=E� 1 ratio. Taken together, this term in

Eq. (20) (b ¼ L2T0=40EI) may be of the order 1. For exam-

ple, for a NW beam of L ¼ 1 lm, R¼ 20 nm, E¼ 200 GPa,

and r0 ¼ 400 MPa, b¼ 0.5. If the Young’s modulus is

extracted using the linear approximation with f ðaÞ ¼ 1

(Eq. (10)), the resulting Emeasured will be (up to the first order

in T0)

Emeasured ¼ E 1þ 1

40

L2T0

EI

� �
: (22)

This incorrect interpretation of the F-D data may lead to sub-

stantial errors in the calculation of the NW’s Young’s modu-

lus, and may result in the increase or decrease of E,

depending on whether T0 is positive (elongation) or negative

(compression). In the above example, for instance, where

b¼ 0.5, the calculation yields E¼ 300 GPa instead of

E¼ 200 GPa. Moreover, even if we take into account the

fact that the slope of the F-D curve within the linear regime

depends on E and T0, it is impossible to determine these two

parameters uniquely from the linear part alone. The linear

behavior of the F-D curve may extend more than is typical

for the stress-free case. Quantitatively, in the linear regime,

u satisfies the following condition:

3

50

S

I
u2 � Max 1;

1

40

L2T0

EI

� �
; (23)

which reduces to

u� 2R for 1 >
1

10

L

R

� �2
r0

E

or

u

L
�

ffiffiffiffiffiffiffiffi
r0

40E

r
for 1 <

1

10

L

R

� �2
r0

E
:

(24)

When r0 is negligible and/or the beam aspect ratio is low,

the linear behavior range is smaller than the NW diameter;

however, for higher residual tensions and/or high NW aspect

ratios, the linear range may be larger than the beam diameter.

For example, for a long beam of L ¼ 20 lm, R ¼ 20 nm,

E ¼ 200 GPa, and r0 ¼ 400 MPa, a displacement of 100 nm

is well within the linear regime.

Before examining the quality and range of validity of

the previous approximations, we present a plot of f ðaÞ vs. a
according to Eq. (11) (Fig. 1). It is immediately obvious that

f ðaÞ is a simple monotonic function that easily fits a polyno-

mial function. The best fit (red line in Fig. 1) was restricted

to the format 1þ aaþ ba2 and was found to be

fappðaÞ ¼ 1þ 2:412 � 10�2a� 1:407 � 10�6a2: (25)

As will be discussed later, this approximation proves very

useful for a broad range of beam deflections.
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III. APPROXIMATE SOLUTIONS

To evaluate the various approximations correctly, we

choose NW beams with parameter values (length, radius,

Young’s modulus, and initial tension) similar to those of a

typical SiNW, and solve Eq. (12) to produce aexact for a

given displacement, u. Then, we evaluate f ðaÞ according to

Eq. (11) and produce theoretical force-displacement data

which correspond to the parameters we used. Fig. 2 presents

a plot of ðaapp � aexactÞ=aexact as a function of u for a NW

of L ¼ 1 lm, R¼ 20 nm, E¼ 190 GPa, for two residual

stresses, r0¼ 0 MPa and 500 MPa. As is evident from the

graph, the relative deviation of aapp from the exact value is

less than 2% for both initial stresses, over the entire range of

u, which extends to 10 times the beam radius. This result

was confirmed for several beam dimensions, Young’s

modulus, and initial stresses, and justifies the use of Eq. (17)

as an excellent approximation for a, even in cases where

r0 6¼ 0.

Knowing that aapp is an excellent approximation, we

may proceed to examine several approximations of the theo-

retical F-D data that utilize different forms of f ðaappÞ within

the basic structure of Eq. (10). The first approximation (f1) is

described by Eq. (19) up to the first order of T0 and �. The

second (f2) is described by the full expression of Eq. (19),

the third (f3) by Eq. (18), and the fourth and last approxima-

tion (f4), is described by Eq. (25). Figs. 3(a) and 3(b) present

the exact force-displacement curve and the four discussed

approximations for r0 ¼ 0 MPa and 500 MPa, respectively.

Figs. 4(a) and 4(b) present the relative deviations of these

four approximations from the exact F-D data, i.e.,

ðFiðuÞ � FexactðuÞÞ=FexactðuÞ, for the two initial stresses. The

quality and range of validity of each approximation can be

deduced from these four graphs. The first three approxima-

tions (f1, f2, and f3), which originate from the Taylor expan-

sion, are very similar, although the range of validity of f3 is

larger than that of f1 and f2, since the expansion in aapp con-

tains higher powers of T0 and �. For displacements smaller

than 4R, 3R, and 2R, the relative error is less than 2% for

approximations f3, f2, and f1, respectively. However, the rela-

tive error for approximation f4 is less than 2% for the entire

range of u, which extends to 10R. This observation will play

an important role in the correct extraction of the initial stress

and the Young’s modulus from real, experimental F-D data.

The range of validity of each approximation can be

derived as follows. If we expand f ðaÞ up to the third power

of a, we obtain the following relationship:

f að Þ � 1þ a
40
� a2

134400
þ a3

48384000
: (26)

Equation (18) is justified as long as the quadratic term in a in

Eq. (26) is greater than the cubic term, i.e., a < 360. This

condition implies the two following constraints:

r0

E

L

R

� �2

< 100 (27)

and

u

R
< 6: (28)

For r0 � 500 MPa and E � 200 GPa, the first condition

translates to L=R < 200, which is satisfied by the example

we tested, namely, L=R ¼ 1000 nm=20 nm ¼ 50. The second

requirement is in good agreement with the results presented

in Figs. 3 and 4 for approximations f1, f2, and f3. The fourth

approximation, f4, is based on a different expansion of f ðaÞ,
as described by Eq. (25). This polynomial fit is accurate

(over 97%) up to a¼ 1000, which implies that

r0

E

L

R

� �2

� 250 (29)

and

u

R
� 10: (30)

Both conditions are fulfilled in our example and indeed, for

R¼ 20 nm, the validity range of this approximation is much

broader than for the other approximations and extends up to

u � 200 nm, as evident from Figs. 3 and 4.

FIG. 1. f ðaÞ vs. a. Blue circles represent the exact function according to Eq.

(11), while the red line represents the best fit according to Eq. (25).

FIG. 2. Relative difference between aapp and aexact vs. u, for r0¼ 0 MPa and

500 MPa. The solution of Eq. (12) is aexact, and aapp is given by Eq. (17).
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IV. COMPRESSIVE RESIDUAL STRESS

So far, we have discussed the scenario of positive resid-

ual tension, T0 > 0, which corresponds to beam elongation.

However, to enhance the device’s electrical performance, or

as a consequence of the fabrication process, the beam is of-

ten under compression, and T0 < 0. In such circumstances,

the Euler-Bernoulli beam equation, and the resulting solu-

tions, should be modified. For small displacements with neg-

ative initial tension, the overall tension will be negative as

well. If we define Tnew ¼ �T > 0, Eq. (5) becomes

L2
0new

@3u

@x3
þ @u

@x
¼ � F

2Tnew
; (31)

where L2
0new ¼ EI=Tnew. The analytical solution for this equa-

tion is

u xð Þ ¼ � F

2Tnew
x� L0newsinh x=L0newð Þð

þL0 cos x=L0newð Þ � 1ð Þtan L=4L0newð ÞÞ (32)

and for x ¼ L=2 we obtain

u L=2ð Þ ¼ � F

2Tnew

L

2
� L0newsinh L=2L0newð Þ

�

þL0 cos L=2L0newð Þ � 1ð Þtan L=4L0newð Þ
�
; (33)

which reduces to

u L=2ð Þ ¼ � F

2Tnew

1

cos L=4L0newð Þ � L=2 cos L=4L0newð Þð

� 2L0new sin L=4L0newð ÞÞ: (34)

If we recall that L2
0 ¼ EI=T ¼ �EI=Tnew ¼ �L2

0new, then

L0 ¼ iL0new (taking the positive root) and the following rela-

tionships hold true:

coshðizÞ¼ cosðzÞ
sinhðizÞ¼ isinðzÞ

coshðL=4L0Þ¼ coshð�iL=4L0newÞ¼ cosðL=4L0newÞ
sinhðL=4L0Þ¼ sinhð�iL=4L0newÞ¼�isinðL=4L0newÞ:

(35)

Plugging Eq. (35) into Eq. (34) yields

u L=2ð Þ ¼ F

2T

1

cosh L=4L0ð Þ � L=2cosh L=4L0ð Þð

� 2sign Tð ÞL0sinh L=4L0ð ÞÞ; (36)

which has the same form as Eq. (7).

As before, u depends on Tnew, which is unknown.

Following the same procedure as presented previously

T ¼ �T0new þ
ES

2L

ðL

0

@u

@x

� �2

dx (37)

and when T0new > 0, we obtain

T¼�T0newþ
ESF2

16T2

1

cos2 L=4L0newð Þ

� 2þ cos L=2L0newð Þ�6
L0new

L
sin L=2L0newð Þ

� �
: (38)

This solution may also be written

T¼T0þ
ESF2

16T2

1

cosh2 L=4L0ð Þ

� 2þcosh L=2L0ð Þ�6sign Tð ÞL0

L
sinh L=2L0ð Þ

� �
; (39)

FIG. 3. The external force, F, vs. the

displacement, u, of the exact solution

and the four mentioned approximations

(a) for zero residual stress, and (b) for

a 500 MPa residual stress.

FIG. 4. The relative error of the exter-

nal force, ðFapp � FexactÞ=Fexact, vs. the

displacement, u, for the four men-

tioned approximations (a) for zero re-

sidual stress and (b) for a 500 MPa

residual stress.
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which is identical to Eq. (8). When the initial tension is

small, and for small displacements, the resulting tension is

small, and the solution may be expanded for u (Eq. (33)) by

powers of Tnew, resulting in

u L=2ð Þ � FL3

192EI
1þ L2Tnew

40EI
þ 17

26880

L2Tnew

EI

� �2
 !

; (40)

which again has the same form as Eq. (9) if one replaces

Tnew ! �T. As expected, the expansion is by powers of

anew ¼ L2Tnew

EI ¼ L
L0new

� �2
, and after rewriting the last equation,

we find that the external force can be expressed as follows:

Fext ¼
192EI

L3
u L=2ð Þf anewð Þ: (41)

Plugging u from Eq. (33) into Eq. (41) eliminates Fext ¼ F
and results in a final equation for f ðanewÞ

f anewð Þ ¼
�anew

48�
192 tan

ffiffiffiffiffiffiffiffiffi
anew
p

=4
� �
ffiffiffi
a
p

new

: (42)

If we recall that

a ¼ L

L0

� �2

¼ � L

L0new

� �2

¼ �anew (43)

and use the following relationship:

tanh
ffiffiffi
a
p

=4
� �
ffiffiffi
a
p ¼

tanh i
ffiffiffiffiffiffiffiffiffi
anew
p

=4
� �
i
ffiffiffiffiffiffiffiffiffi
anew
p

¼
itanh

ffiffiffiffiffiffiffiffiffi
anew
p

=4
� �
i
ffiffiffiffiffiffiffiffiffi
anew
p ¼

tan
ffiffiffiffiffiffiffiffiffi
anew
p

=4
� �
ffiffiffiffiffiffiffiffiffi
anew
p ; (44)

we find that

f anewð Þ ¼
�anew

48�
192 tan

ffiffiffiffiffiffiffiffiffi
anew
p

=4
� �
ffiffiffi
a
p

new

¼ a

48� 192tanh
ffiffiffi
a
p

=4
� �
ffiffiffi
a
p

¼ f að Þ; (45)

which is the same as Eq. (11) for f ðaÞ. Now we can go back

and plug Eqs. (41) and (42) into Eq. (38), and obtain

�anew þ
L2T0new

EI

� �

�
cos2 ffiffiffiffiffiffiffiffiffi

anew
p

=4
� �

2þ cos
ffiffiffiffiffiffiffiffiffi
anew
p

=2
� �

� 6 sin
ffiffiffiffiffiffiffiffiffi
anew
p

=2
� �

=
ffiffiffiffiffiffiffiffiffi
anew
p

� 1� 4 tan
ffiffiffiffiffiffiffiffiffi
anew
p

=4
� �

=
ffiffiffiffiffiffiffiffiffi
anew
p� �2 ¼ S

I
u2 L=2ð Þ: (46)

This equation is identical to Eq. (12) following the usual

transformation from anew to a according to Eqs. (43), (35),

and (44). Indeed, this result is of fundamental importance. It

tells us that in our self-consistent procedure, in which we

numerically solve the set of Eqs. (10) and (12) for a > 0, or

Eqs. (41) and (46) for a < 0, we may choose one single set

of equations for both positive and negative stresses, and that

a self consistent solution can be found. This equivalence

between positive and negative tensions holds true also for

the four approximations discussed earlier. For small

L2T0new=EI < 1, and for � ¼ u2S=I < 1, Eq. (46) may be

expanded by powers of anew, leading to

�anew þ
L2T0new

EI

� �
5

12
� anew

4032
� a2

new

1128960

� �
’ S

I
u2 ¼ �:

(47)

Or, if we wish to keep only the smallest terms

�anew þ
L2T0new

EI

� �
5

12
’ S

I
u2 ¼ �: (48)

This equation leads to

�anew ’
12

5

S

I
u2 � L2T0new

EI
¼ 12

5

S

I
u2 þ L2T0

EI
’ a; (49)

which is the same result as was found previously for positive

tensions, i.e., Eq. (14). An increase in u brings about an

increase in total tension, as well as similar increases in a, as

we discussed above. Therefore, the same Pad�e approxima-

tion will hold true for negative residual tensions as well, and

the final approximation for a will be the same as Eq. (17),

i.e.,

�anew ’
L2T0

EI
þ 6� 140þ �ð Þ

350þ 3�
’ a: (50)

Similarly, the expansion of f ðanewÞ for small anew will be as

follows:

f anewð Þ � 1� anew

40
� a2

new

134 400
; (51)

which is the same as that found previously for anew ! �a
(Eq. (18)). The same approximations can, therefore, be used

for the force-displacement data and for f1–f4, for both com-

pression and elongation stresses.

V. DISCUSSION

Unlike the theoretical procedure discussed so far, in real

experiments the Young’s modulus and the residual tension

of a deflected beam are unknown and must be determined

from the F-D data using one of several possible methods.

The first method is based on solving the set of Eqs. (10) and

(12) self consistently, but the convergence according to this

method is very slow and if the initial guess of the two

unknowns is far from the correct values, an incorrect solution

for both E and T0 may be obtained. Alternatively, the various

approximations mentioned previously may be used to find

the two variables. The difficulty with this approach arises

from the fact that some of these approximations are very sen-

sitive to the range of deflections for which the experimental

data is being fitted. Unfortunately, if the fitted data is beyond

the range of validity of the given approximations, excellent
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agreement may be found between the data and the theoretical

curves, while the resulting E and T0 may be totally incorrect.

This problem may explain part of the large variance in the

Young’s moduli of various nanobeams obtained by some

researchers.

To examine this discrepancy, we decided to use approxi-

mations f1–f4 and study their extracted E and T0 for different

deflection fitting ranges. The results of this analysis are plot-

ted in Figs. 5(a) and 5(b), for the four approximations used.

The extracted initial tension and Young’s modulus were found

by fitting each approximation, from zero deflection until a

given value of u/R, with the correct theoretical F-D data as

calculated according to Eqs. (12) and (10), for initial stress of

r0 ¼ 500 MPa, and Young’s modulus of E¼ 190 GPa. As is

evident from the graphs, the relative errors for approximations

f1–f3, dE, and dT0 are small for narrow fitting ranges, but

increase quite rapidly when the fitting ranges approach 5R.

Approximation f4, however, which is based on Eq. (25),

remains very accurate throughout the entire fitting range, with

a relative error of less than 2%. This analysis was tested for

different F-D curves, including negative residual tensions, and

the observed results are in good agreement with the results

presented in Figs. 4(a) and 4(b). Thus, approximation f4 is an

excellent approximation, it yields E and T0 very rapidly and

with great accuracy, and it is not subject to large errors as a

result of a non-optimal fitting range. Moreover, after extract-

ing E and T0 from this approximation, these values may be

used as initial guesses for the self-consistent procedure. In

such circumstances, the method converges very rapidly (a few

iterations) and the relative errors of the extracted E and T0 are

less than 0.1% of their theoretical values.

It is worth comparing our results with those obtained

using the most common model used so far in the literature

for extracting both E and r0. The model in question is based

on the principle of virtual work, which utilizes the varia-

tional method to find the minimum potential energy of a

given structure. An example of such a procedure was given

by Senturia,48 who derived the F-D curve for a suspended

rectangular beam that included residual tension, using a sim-

ple analytical guess for the beam displacement. The resulting

F-D relationship is given by the following equation:

F ¼ p2

2

r0wh

L
þ p4

6

Ewh3

L3

� �
uþ p4

8

Ewh

L3
u3

� 4:93
r0wh

L
þ 16:23

Ewh3

L3

� �
uþ 12:17

Ewh

L3
u3; (52)

where w and h are the width and thickness of the rectangular

beam, respectively. First, it is worth comparing this approxi-

mated analytical result with the accurate analytical expan-

sion given by Eqs. (10) and (19), using the rectangular

moment of inertia, I ¼ wh3=12. The resulting expansion

yields

F ¼ 24

5

r0wh

L
þ 16

Ewh3

L3

� �
uþ 288

25

Ewh

L3
u3

� 4:8
r0wh

L
þ 16

Ewh3

L3

� �
uþ 11:52

Ewh

L3
u3: (53)

Equation (52) may naively be considered to be a good

approximation of the analytical expansion, Eq. (53). Using a,

b, and c to denote the numerical prefactors of the two expan-

sions, from left to right, we find that the relative errors are

small: da=a¼ (4.93� 4.8)/4.8¼ 0.027, db=b¼ (16.23� 16)/

16¼ 0.014, and dc=c¼ (12.17� 11.52)/11.52¼ 0.056. Since

these two relationships contain also non-linear terms (u3),

the extracted results from the two models are, however, sig-

nificantly different. Following is a detailed comparison

between these two models.

We first chose typical values for a rectangular SiNW,

i.e., E¼ 190 GPa, r0¼ 500 MPa, width w¼ 40 nm, thickness

t¼ 40 nm, and length L¼ 1 lm. Then, we obtained the cor-

rect F-D curve for these parameters by numerically solving

the set of equations for the 3-point bending analysis. This F-

D curve is referred to as the experimental data against which

three approximate models were tested. Three displacement

(u) ranges were examined: (a) small, u < 3ðw=2Þ, (b)

medium, u < 6ðw=2Þ, and (c) large, u < 10ðw=2Þ. The three

approximate models are described by Eq. (52), f1 (1st order),

and f4.

Figs. 6(a)–6(c) present the experimental data and the

three fitting curves according to Eqs. (52), (19), and (25).

Surprisingly, for each displacement range all four curves are

almost identical. Such excellent agreement between experi-

mental and theoretical usually leads researchers to assume

that their theoretical model is accurate and successful in cap-

turing the correct physics of the problem. In this case, how-

ever, the three models are very different from one another.

Thus, the extracted Young’s modulus and residual stress

should be examined for each approximation, and compared

with the known values that were chosen originally in

order to fabricate this experimental force displacement

curve. Figs. 7(a) and 7(b) present the results of such analysis.

FIG. 5. The relative error in the

extracted residual tension (a) and

Young’s modulus (b) for different fit-

ting ranges measured in beam radius

(u/R) for the four listed approxima-

tions. The theoretical force-deflection

data was calculated with initial stress

of r0 ¼ 500 MPa, and Young’s modu-

lus of E¼ 190 GPa.
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The green dashed lines in Figs. 7(a) and 7(b) correspond to

the chosen values of the Young’s modulus and residual

stress, i.e., E¼ 190 GPa and r0¼ 500 MPa, respectively, and

the blue, red and magenta circles correspond to the extracted

values according to Eqs. (52), (19), and (25), respectively.

As expected, for the small fitting range, the two approxima-

tions f1 and f4 yield good estimations for E and r0, although

approximation f4 is much better. As the fitting range

increases, approximation f1 deviates increasingly from the

theoretical values as opposed to approximation f4, which

remains almost unchanged over the three fitting ranges. This

observation is crucial, and the fact that f4 is “immune” from

this phenomenon for large fitting ranges are of substantial

importance. The Senturia model is the least accurate, and

even for short fitting ranges it yields erroneous results.

Nevertheless, it is a very commonly used approximation, not

only for SiNWs but also for extracting the Young’s modulus

and residual stress of other beam-like structures, such as gra-

phene nanoribbons.49 An alternative approach, which uses

the same structure of Eq. (52) but with different prefactors

that were calculated numerically using the finite element

method, is limited as well.48 In the best scenario, the prefac-

tors will be identical to the analytical expansion, Eq. (53),

and according to Figs. 7(a) and 7(b) the extracted E and r0

will be less accurate in comparison with Eq. (25).

To acquire an additional tool for analyzing beam deflec-

tions and to confirm the suggested model’s validity, finite

element (FE) simulations (COMSOL Multiphysics 3.4a)

were carried out. Structures comparable in size and expected

elastic properties to experimentally measured NW beams

were constructed and subjected to a center point load. Fig. 8

shows F-D curves obtained by solving the exact beam

equations, namely, Eqs. (10), (11), and (12) (red lines), the

polynomial approximation f4 (light blue dashed lines), and

the FE simulations (blue circles), using the same NW param-

eters. Curves 1, 2, and 3 simulate beams of varying stresses:

r0 ¼ 0 MPa, �500 MPa, and 500 MPa, respectively. Curve 4

simulates a longer beam of L ¼ 2 lm and r0 ¼ �100 MPa.

Note that the stress-free case of curve 1 corresponds to

Heidelberg’s model. Also note the excellent agreement

between the exact solutions, the analytical approximation

(with and without initial stress), and the FE simulations.

Equipped with this procedure, beam deflections can be

experimentally studied using a 3-point bending apparatus.

Results of such experiments and analyses of SiNWs were

FIG. 6. Experimental F-D curve (green line) and three fitting curves (blue, red, and magenta) according to Eqs. (52), (19), and (25), respectively, for three dis-

placement ranges (a) u < 3ðw=2Þ, (b) u < 6ðw=2Þ, and (c) u < 10ðw=2Þ.

FIG. 7. Theoretical and extracted results

according to the previous fitting curves

(Fig. 6) for the Young’s modulus (a) and

residual stress (b). The different fitting

ranges are labeled, small, medium, and

large and correspond to u < 3ðw=2Þ;
u < 6ðw=2Þ, and u < 10ðw=2Þ, respec-

tively. Green dashed lines are theoretical

values, blue, red, and magenta circles

are results according to Eqs. (52), (19),

and (25), respectively.

FIG. 8. Force-deflection curves obtained by the exact solution of the beam

equations, the polynomial approximation, f4, and FE simulations. All curves

correspond to NW beams of d¼ 40 nm and E¼ 190 GPa. Curves 1, 2, and 3

simulate beams of L ¼ 1 lm and r0¼ 0 MPa, �500 MPa, and 500 MPa,

respectively. Curve 4 simulates a beam of L ¼ 2 lm and r0 ¼ �100 MPa.
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presented by Calahorra et al.50 In brief, doubly clamped

suspended SiNW beams were fabricated in a single e-beam

lithography (EBL) step process.51 Three-point bending

experiments were then performed on the suspended beams

before and after RTA. Non-oxidized and oxidized SiNWs of

two different SiO2 sheath thickness were tested. Fig. 9

presents the resulting Eeff (black circles) for these wires

obtained according to the presented theoretical model and

approximation f4. Seven devices contained native oxide

(dshell � 2 nm), and two were oxidized (dshell � 7 nm). These

results were compared with results from the core-shell model

introduced by Eq. (2) which offers four relevant possibilities

for such NWs: two shell thicknesses (2 nm and 7 nm)

and two expected core Young’s moduli, Ecore (Eh110i; h112i
¼ 170 GPa and Eh111i ¼ 190 GPa). The blue and light

blue curves correspond to non-oxidized SiNWs with

Ecore¼ 170 GPa and 190 GPa, respectively, and the red and

magenta lines represent oxidized wires with Ecore¼ 170 GPa

and 190 GPa, respectively. Note that the good agreement

between the theoretical model and the measured data as well

as the dependence of Eeff on NW diameter, as predicted. This

result suggests that for narrow SiNWs with core diameters

greater than 20 nm, the decrease in the effective Young’s

modulus with wire diameter is not related to the nanosize

effect, as several studies previously predicted,41,52 but is

fully explained within the core-shell model (Eq. (2)).

Figs. 10(a) and 10(b) present plots of the resulting r0

and Ecore vs. NW diameter. Fig. 10(b) shows the ratios of

extracted Ecore to the theoretical Young’s modulus according

to the wire’s crystallographic growth orientation. Red circles

correspond to Ecore=ðEh110i;h112i ¼ 170 GPa) and blue circles

represent Ecore=ðEh111i ¼ 190 GPa). The experimental data

are scattered nicely around 1, and the average Young’s mod-

uli obtained from these devices are 169 6 10 GPa (red data)

and 194 6 12 GPa (blue data). These extracted Young’s

moduli are in excellent agreement with bulk Si with h110i,
or h112i, and h111i crystallographic growth orientations

(Eh110i;h112i ¼ 170 GPa and Eh111i ¼ 190 GPa), which is

expected considering the NWs used.53 Interestingly, the

residual stress for these NWs, as shown in Fig. 10(a), ranges

between �30 MPa and 450 MPa, with no obvious correlation

between the NW diameters and the stress.

The possibility of fine-tuning the residual stresses of

electronic devices is of great importance, and to that end we

also studied the origin of the stresses we obtained. First, we

verified that the source of residual tension is not related to

the adsorption of adatoms on the wire’s circumference by

conducting our 3-point bending experiments with and with-

out treatment with ozone plasma and obtained similar

results. Ozone plasma removes any residues and contamina-

tions that may adhere to the nanowire during its fabrication

process. The fact that the results were similar rules out the

possibility of such surface residue and/or contamination.

Etching cannot be responsible either, since no etching takes

place during the fabrication process. Deposition happens

only on the source and drain electrodes and, indeed, we have

evidence that the shape and structure of these electrodes may

affect the resulting stresses and may modify them in a con-

trolled manner. For configurations in which several thin rec-

tangular electrodes are deposited on the nanowire adjacent to

one another, the suspended segment remains parallel to the

wafer substrate and the residual stresses remain small. If,

however, the source and drain electrodes are wide and far

from any other electrodes, the resulting stresses are greater

than before. Yet, the main process that modifies residual

stresses is attributed to RTA, as presented below.

During RTA, nickel silicide segments are formed adja-

cent to the Ni source and drain electrodes and compressive

strains are observed along the SiNW.20,54,55 Hence, devices

FIG. 9. The core-shell model prediction for Ecore¼ 170 GPa or 190 GPa and

shell thickness of 2 nm or 7 nm (colored lines, see main text) alongside the

extracted fitting results for the effective Young’s modulus (black circles).

FIG. 10. (a) The extracted residual stress, r0, vs. nanowire diameter. (b) The

extracted Ecore divided by the expected theoretical Young’s modulus (red

circles for Eh110i;h112i ¼ 170 GPa and blue circles for Eh111i ¼ 190 GPa) vs.

nanowire diameter.
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are expected to have smaller initial stress values after RTA;

indeed, values may even be negative.

Fig. 11 shows measured F-D curves taken from the

same device before and after RTA at 400	 C for 30 s. The

geometric parameters are L ¼ 1:35 lm and d¼ 26 nm for

both cases. Fitting results were based on the f4 approxima-

tion. Fitting results before RTA are Eeff¼ 123 GPa, and

r0¼ 159 MPa which corresponds to Ecore¼ 173 GPa (Eq.

(2)), while after RTA Eeff¼ 113 GPa, and r0¼ 45 MPa,

yielding Ecore¼ 154 GPa. After RTA, Eeff is smaller since

the Young’s modulus for NiSi is smaller than that for Si

(reported to be about 130 GPa (Ref. 56)), and because parts

of the SiNW turn into NiSi after RTA. A significant change

of about �115 MPa in the initial stress was found, corre-

sponding to compression during RTA.

Alternatively, we may examine the modification of the

residual stresses due to the formation of nickel silicide

phases near the source and drain contacts. Previous studies

have established that a nickel-rich phase is formed near the

nickel contacts. The transformation 2Niþ Si !Ni2Si usu-

ally takes place, and the atomic volume along the wire

changes. The relative change in atomic volume depends on

the specific Ni2Si phase that is formed near the contacts.

However, the atomic volume of Ni2Si is, to a good approxi-

mation, VNi2Si ¼ 33 Å
3
, where VSiNW ¼ 20 Å

3
for SiNW.

Thus, the relative change of volume is dV
V ¼ 13

20
, and along the

wire it is dl
l � 0:2. Although not all the NW segment trans-

forms into nickel-rich silicide, we concluded from SEM

images that a small fraction near the two anchoring points,

of several nm up to about ten nm, was transformed into a

nickel-rich phase. Hence, the expected stress modification

may be as large as 400 MPa and it always reduces the initial

stress, r0. The initial stress may be positive but small, and as

a result of the RTA, the relaxed length of the wire increases,

thus reducing the built-in stress of the remaining silicon seg-

ment. If the amount of nickel-rich silicide is large enough

(1% of the entire NW), the positive stress will change sign,

indicating that the wire is under compression; if it exceeds

the Euler-Bernoulli instability criteria for buckling, the NW

will bend, as we found experimentally in some of our NWs.

These two examples emphasize the importance of

including the residual stresses in the 3-point bending analy-

sis, and stress the significance of the optimal approximation,

f4, in extracting the correct Young’s moduli, including the

NW’s growth orientation.

VI. SUMMARY

In conclusion, we introduce a comprehensive model for

the 3-point bending experiment of doubly clamped beams in

which initial stresses of elongation or compression are pres-

ent along the beam. We offer a self-consistent solution for

the set of beam equations and develop and compare several

approximations with the exact numerical results. The quality

and validity range of each approximation were studied, and a

novel approximation, named f4 (Eq. (25)), was found to be

significantly better than others. The model and the best

approximation were compared with FE simulations and were

found to be in remarkable agreement.

A theoretical analysis of the model showed the impor-

tance of including initial stresses in the analysis of the

mechanical properties of suspended NWs. Ignoring them

may lead to large errors in determining Young’s modulus,

especially when applying the linear model to the force-

displacement curve.

Two examples of 3-point bending experiments were pre-

sented, and a theoretical analysis was used to determine the

correct Young’s moduli, the residual stresses, and the crys-

tallographic growth orientations of the tested NWs. The anal-

ysis confirms that RTA causes compression along the SiNW

beams and that the core-shell model is applicable for describ-

ing the elastic properties of SiNWs with beam diameters

greater than 20 nm. This procedure is not restricted to SiNW

beams, but may be used on a large variety of doubly clamped

suspended beams that undergo 3-point bending analysis.
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