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Vibrational analysis of thermal oscillations of single-walled carbon nanotubes under axial strain
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The first four flexural vibrational modes of single-walled carbon nanotubes (SWCNTs) of various lengths under
different axial strains were studied using atomistic molecular dynamics within the framework of the Brenner
interatomic potential and Fourier analysis. The simulated results are in excellent agreement with the Timoshenko
beam model, which includes the effect of both rotary inertia and of shearing deformation. From the crossing
points of the simulation data with the expected resonance frequencies of the unstrained tubes an upper limit
for the effective SWCNT thickness is found (�0.1 nm), with no adjustable parameters. This partially resolves
Yakobson’s paradox concerning scattered estimates for nanotube width.
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I. INTRODUCTION

In the last few years intensive research on nano-electro-
mechanical systems (NEMSs) based on carbon nanotubes
(CNTs), has been made both experimentally and theoretically.
Researchers measured the resonance frequencies of doubly
clamped CNTs, studied dissipation processes within the
vibrating tubes, and exploited their small mass to achieve
ultralow mass sensitivities [1–11]. A key parameter in these ex-
periments is the possibility of tuning the resonance frequencies
by external gate electrodes. These gate electrodes, in addition
to causing the tubes to vibrate at their resonance modes,
also introduce an axial strain which modifies the resonance
frequencies significantly [12,13]. Tuning is crucial for the
implementation of such NEMS devices in future applications,
such as filters, transducers, and sensors, and hence vibrational
behavior under strain must be modeled.

There is a large body of simulation and analytic analysis
modeling vibrational frequencies of CNTs. We have summa-
rized the broad consensus that doubly clamped nanotubes
have frequencies dependent on length and width but not on
chirality in [14,15]. However, several studies show that there
is a chirality dependence if the nanotubes are not doubly
clamped [16–18]. Some aspects of these results are somewhat
independent of the approach, be it direct simulation or an
analytic model, but once the double clamping is relaxed (in
imitation of the laboratory situation [16]), atomistic simulation
is the most reliable way to characterize nanotube behavior.

In this paper we consider the effect of axial tension on the
first four vibrational modes of single-walled carbon nanotube
(SWCNT), using molecular dynamics (MD) and no fitting
parameters. An early study of axial tension was made by [19]
and more recent studies include those of [20,21]. These are
limited to very small tensions (and compressions) and only the
fundamental frequency has been deduced in most simulations.
Analytic studies of tensioned tubes are complicated by possible
variations in wall thickness under tension. An additional
study of MD [13] and the analytic study of Sampaz et al.
[12] introduce tension in their analysis, however, through
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transversal electric fields which cause deformation of the tube
in the direction perpendicular to its axis and stretching of the
CNT. Moreover, the dynamic vibrations in Ref. [12] were
significantly larger than the tube diameter and contributed
as well to the beam elongation. In our study, the applied
tensions are solely longitudinal, keeping the static vertical
deformation of the tube at zero, and the axial symmetry of the
tube is conserved. The vertical oscillations, which are driven
by thermal noise, are less than the CNT diameter (u < 0.1 Å),
hence, making their contribution to beam stretching negligible,
and the tube motion is dominated by the interplay between the
bending rigidity and the applied axial tension.

In a previous study [14] we introduced the Timoshenko
beam model [22] to explain the simulation results for the
vibrational modes of SWCNTs of different lengths and
diameters. We gave a range of values for the product of
the Young’s modulus, E, and the nanotube width. We now
extend this model to tensioned tubes and again obtain excellent
agreement with the simulated results. The additional tension
variable leads to cancellations at special “crossing points,”
which leads to an upper limit to the tube thickness with no free
parameters. This bounds the widely varying estimates of this
thickness known as Yakobson’s paradox [23].

In the next section we present details of our simulations and
results. In Sec. III we present analytical models and discuss
their comparison with our numerical results. Conclusions are
made in Sec. IV. In Appendix A we describe our full set of
raw data and provide a comparison with an existing result for
a stretched nanotube. In Appendix B we provide additional
details of our Timoshenko beam model analysis.

II. SIMULATION DETAILS AND RESULTS

We validated our MD approach (Brenner interatomic poten-
tial [24] and predictor-corrector algorithm) in [14]; details and
codes are given in [25]. Throughout the code development we
generated still and animated atomic images with AViz [26] for
verification purposes. An image of a (7,7) armchair nanotube
of radius R = 4.75 Å and length L = 98.38 Å oriented along
the y axis is shown in Fig. 1 [16]. Each ring of atoms is
called a period [14]. We consider the four lowest vibrational
modes, with wavelengths of λn = 2L, L, 2L/3, and L/2,
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FIG. 1. (Color online) Doubly clamped (7,7) armchair nanotube.
Three periods are frozen at each end [light gray (yellow online) atoms]
and the remaining dark gray (blue online) atoms are free to move.

n = 1–4, respectively, and the effect of three different tensions,
from initial lengths of L = 98.38, 147.57, 196.76, 245.95, and
295.14 Å; 20 tubes in total.

A Berendsen thermostat [27] was applied to maintain
temperature. To ensure stable nanotube structure and eliminate
intrinsic tension, we collected data after a period of slow initial
thermalization to 300 K (periodic boundary conditions with
no frozen edges), waiting until the length of the equilibrated
nanotube remained constant up to insignificant fluctuations.
The relaxed structures then had the three first periods clamped
(frozen). Three stretched structures were prepared for each
length as follows. The relaxed and equilibrated tubes had
the last three free periods pulled in the positive y direction
for elongation of an additional 2.5%, 5%, and 10% of the
initial length. Then, the last three periods were also frozen to
give doubly clamped boundary conditions. Initial calibration
was conducted in order to delocalize intrinsic tension over the
entire nanotube. To obtain adequate statistics we then let every
nanotube vibrate 1000 times more than the period of its lowest
frequency, using a MD time step of 0.5 fs. We then applied
a fast Fourier transform (FFT) analysis to the data at several
points [14,25], to calculate the power as a function of frequency
for each nanotube. The frequencies are our primary means
for comparing vibrations of different nanotubes. A full table
of all the 80 vibrational modes is presented in Appendix A;
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FIG. 2. (Color online) The fundamental mode as a function of
length for ε = 0, 0.025, 0.5, 0.1 (from bottom to top, respectively).
Symbols are the simulated results, colored dotted lines are interpo-
lated data, the continuous red line is best fit according to Eq. (2), and
black lines are the solutions of EB beam equation [Eq. (1)].

the single set of published values [20] (of the lowest mode
only) whose tension/width/length overlap ours fits in perfectly
(see Fig. 11).

In Fig. 2 we plot the frequencies of the first mode for
the unstrained and strained nanotubes (ε = 0, 0.025, 0.5, and
0.1, in red, blue, green, and cyan, respectively, bottom to
top) as a function of L. The graphs include raw data (with
symbols larger than the error bars), interpolated (dotted) lines,
and continuous fitted (red) and theoretical (black) lines. To
enable comparison of frequencies for different tube tensions
and modes, lengths should be the same. To achieve this
we implement an interpolation procedure (dotted lines) [15]
between adjacent points with the following length dependence:
f = a

L
+ b

L2 (see dashed lines in Fig. 2), where a and b are
fitting parameters.

III. ANALYTICAL MODEL AND DISCUSSION

We now compare with theory for the case of residual
tension, To, denoting angular frequency by ω, wall thicknesses
[14] by hm (mass wall thickness from graphite interlayer spac-
ing) and he (wall thickness from elastic deformation), mass
per unit length by m [2.27 fg for (7,7) tubes], and mass density
by ρ. Am(e) = π (R + hm(e)/2)2 − (R − hm(e)/2)2 are the tube
cross sections. The moment of inertia is I = πRhe(4R2 +
h2

e)/4 and m = ρAm. The fundamental mode of the tube
follows the expected Euler-Bernoulli (EB) beam equation
[14] with parametrization of p = L0/L, L2

0 = EI/T0, and
β4 = ω2mL4/EI ,

∂4u

∂ξ 4
− 1

p2

∂2u

∂ξ 2
= β4u, (1)

where u is the transverse beam displacement (in either x

or z direction) and ξ = y/L is a dimensionless variable.
Equation (1) has an analytical solution for the doubly clamped
beam with any built in residual tension, and specifically for
T0 = 0, the solution for the first four modes yields values
of β0

n = 4.73, 7.85, 10.99, 14.13, respectively [28], in the
expression

f 0
n =

(
β0

n

)2

2π

√
EI

ρAm

1

L2
. (2)

As one can see from Eq. (2), these resonance frequencies
depend on the bending rigidity EI , but not on E or I separately.
Therefore, direct comparison with the simulated data cannot
enable deduction of E and/or he. Nevertheless, for a given
he the tube Young’s modulus can be extracted. In Fig. 2 the
continuous red line is the best fit to the data of the unstrained
tube according to Eq. (2), with the bending rigidity (EI )
as single fitting parameter. Assuming the generally accepted
he = 0.66 nm, one receives E = 3.04 TPa, which is in good
agreement with previous results [14]. Inserting this bending
rigidity and solving Eq. (1) analytically for the vibrational
modes of the strained tubes yields the other three continuous
lines, drawn in black. As can be seen, the agreement between
the simulation and theory is excellent, and it should be
emphasized that for the three families of strained tubes, we
did not use any fitting parameters.
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FIG. 3. (Color online) The fourth modes as functions of length
for ε = 0,0.025,0.5,0.1 (bottom to top, respectively). Symbols are
the simulated results, colored dotted lines are interpolated data, and
continuous black lines are solutions of Eq. (1).

However, when we solve Eq. (1) for the higher vibrational
modes (with and without strain) and compare the results with
the simulated data, we found no satisfactory agreement at all.
For example, in Fig. 3 we show the simulated results (colored
dots) of the fourth mode as a function of tube length for the
different strains. The continuous black lines [solution of Eq. (1)
according to the EB model] are in good agreement at large L,
but as L decreases the deviation between simulation and
model increases. This behavior was observed in [14] for
the unstrained tube and attributed to softening of the tube
tension (compression) according to the Timoshenko beam
model [29]. This model takes into account shear deformation
and rotational inertia effects, which become significantly for
short beams and high resonance modes. The crossover occurs
when μ = R/λn > 0.05. Similar graphs for the second and
third modes are shown in Figs. 4 and 5, respectively.

The Timoshenko beam model has the same form as Eq. (1)
but with the following expressions for the parameters:

1

p2
= AeEεL2

EI
− ω2mL2

AmE

(
1 + AmE

AeGk

)
, (3)

β4 = ω2mL4

EI

(
1 − ω2mI

AmAeGk

)
, (4)

where G is the shear modulus and k is the Timoshenko
shear coefficient, which depends on the geometry. Normally,
k = 9/10 for circular cross sections. The first term in Eq. (3)
arises from the positive residual tension, T0 > 0, whereas the
second term is responsible for the shear deformation. These
two terms have opposite signs, and as a result the first term
increases the vibrational modes (elongation), but the second
makes the beam softer (compression). The role of the second
term becomes more significant as the frequencies increase,
in agreement with the simulated results (Figs. 3, 4, and 5).
For example, let us observe point A in Fig. 3. For larger L

values, the vibrational modes of the studied SWCNTs under
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FIG. 4. (Color online) The second mode as a function of length
for ε = 0,0.025,0.5,0.1 (from bottom to top, respectively). Symbols
are the simulated results, colored dotted lines are interpolated data,
and continuous black lines are the solutions of Eq. (1).

residual strain of ε = 0.05 (green dotted line) are higher than
the vibrational frequencies of the unstrained tubes (black line).
However, to the left of this point (shorter lengths) the negative
contribution to the residual tension becomes dominant and the
tubes are under compression, which results in lower resonance
frequencies with respect to the zero strain case (ε = 0).

There are special frequencies, f0 (similar to point A), at
which these two terms cancel each other, and the tube is
under no tension at all. Since the contribution of the second
term in Eq. (4) is small at these frequencies as explained in
Appendix B, the expected resonance modes should follow the
solution of the EB beam model under zero strain, f 0

n . The
f0 are crossing points between the continuous lines and the
simulated data (see Figs. 3, 4, and 5), and obey the following
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FIG. 5. (Color online) The third mode as a function of length for
ε = 0,0.025,0.5,0.1 (from bottom to top, respectively). Symbols are
the simulated results, colored dotted lines are interpolated data, and
continuous black lines are the solutions of Eq. (1).

115405-3



POLINA PINE, YUVAL E. YAISH, AND JOAN ADLER PHYSICAL REVIEW B 89, 115405 (2014)

0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

3.5

h
e
 (nm) 

E
/G

k

0 0.05 0.1
0

0.5

1

1.5

2

ε

f 02  (
T

H
z2 )

FIG. 6. (Color online) E/Gk vs tube thickness, he. Red squares
(blue circles) were extracted from the crossing frequencies analysis of
the complete (highest) data set, as discussed in the main text. (Inset)
f 2

0 vs ε for a given he = 0.066 nm. Green triangles, blue rectangles,
and the red circle are the crossing frequencies of the fourth, the third,
and the second modes with the frequencies of the same modes for
the unstrained tubes, respectively. Cyan (black) lines are the best
fits to linear behavior of the complete (highest) crossing frequencies
analysis.

relation:

f 2
0 = 1

(2π )2

AeAmE

Im

(
1 + Am

Ae

E

Gk

)−1

ε. (5)

The inset of Fig. 6 depicts f 2
0 vs ε as extracted from Figs. 3, 4,

and 5. The two lines are best fits to the linear relation of all the
crossing points (cyan) and to the highest of each mode, f max

0
(black). In Appendix B we explain why the approximation
we have used is more justified for f max

0 , as is evident from the
superior linear fitting that cross the origin for zero strain. From
the slope of these lines one can extract E/Gk and compare
to the theoretical value of E/Gk = 2(1 + ν)/k = 3 ± 0.1,
where ν = 0.3–0.4 is the Poisson ratio of SWCNTs [19,30].
This value of E/Gk is consistent with previous result that we
have discussed in Ref. [14].

In the current analysis we have used he = 0.066 nm. As
mentioned before, the EB beam model depends only on the
bending rigidity, EI , and not on each of them separately. We
could repeat the previous analysis with other values of he,
and study if and how E/GK is modified. The results of such
analysis are depicted in Fig. 6 where E/Gk is plotted vs he.
Red circles originate from the whole data set (cyan line in
Fig. 6, inset), and blue circles are due to the highest data
points from each mode (black line in Fig. 6). Surprisingly, for
he � 0.1 nm E/Gk tends to saturate at the theoretical value
of ≈3, but for higher values of he, there is a substantial drop in
the values of E/Gk, suggesting that these values for the elastic
tube thickness are erroneous, thus placing an upper limit on
Yakobson’s paradox. This result is in good agreement with
Ref. [14], based on diameter analysis of the vibrational modes,
as well as, [18], who based their results on a continuum model.
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FIG. 7. (Color online) The first four vibrational modes as a
function of length for ε = 0.1 (from bottom to top, respectively).
Red, blue, green, and cyan are the interpolated simulated results,
and continuous black lines are the solutions of Eqs. (1), (3), and (4)
without any fitting parameter.

Given the values of the bending rigidity from the Young’s
modulus (E = 3.04 TPa), the tube thickness (he = 0.66 nm),
and E/Gk = 3, there are no fitting parameters left in Eqs. (1),
(3), and (4). Hence, one can solve this set of equations
(frequencies vs lengths) and compare them to the simulated
results. The procedure to solve these equations is the following.
Equation (1) has an analytical solution for any value of residual
tension, T0. However, the expression is quite cumbersome
for T0 �= 0, but may be defined in the following relation:
βn = F(T0L

2/EI ) = F(1/p2). From the definition of βn one
may extract the expected resonance frequencies. Inserting
these frequencies back into Eqs. (3) and (4) and solving them
self-consistently yields the resonance modes vs tube lengths
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FIG. 8. (Color online) The first four vibrational modes as a
function of length for ε = 0 (from bottom to top, respectively).
Red, blue, green, and cyan are the interpolated simulated results,
and continuous black lines are the solutions of Eqs. (1), (3), and (4)
without any fitting parameter.
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FIG. 9. (Color online) The first four vibrational modes as a
function of length for ε = 0.025 (from bottom to top, respectively).
Red, blue, green, and cyan are the interpolated simulated results,
and continuous black lines are the solutions of Eqs. (1), (3), and (4)
without any fitting parameter.

for any given strain. The results of this analysis are plotted in
Figs. 7–10. As evident from this graph, the agreement between
the simulated data and the theoretical model is excellent. We
emphasize that there is no fitting parameter in these figures.

IV. CONCLUSIONS

In summary, we presented a detailed atomistic MD simula-
tion and analysis of the thermal vibrational modes of SWCNTs
subjected to axial strain within the Brenner interatomic
potential. The simulation spans substantial range of tube length
and strain (up to 10%) and agrees well with EB continuum
beam model for the fundamental mode. However, for higher
modes and bigger μ = R/λ ratios the data deviate significantly
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FIG. 10. (Color online) The first four vibrational modes as a
function of length for ε = 0.05 (from bottom to top, respectively).
Red, blue, green, and cyan are the interpolated simulated results,
and continuous black lines are the solutions of Eqs. (1), (3), and (4)
without any fitting parameter.

from the predicted model, and an alternative model (known
as the Timoshenko beam model) that takes into account
the effects of rotary inertia and shearing deformation was
adopted. From comparison between the simulated data and
the EB beam model for the unstrained tube, we could extract
the value of E/Gk ≈ 3, in agreement with the continuum
model, and obtain an upper limit for the tube elastic thickness,
he � 0.1 nm, thus partially resolving Yakobson’s paradox.
This paradox originates from the fact that in most of the
mechanical equations the bending rigidity, I , and the Young’s
modulus, E, appear together; thus, it is not a simple task to
measure them separately. This challenge is very relevant to
CNTs, since the thickness which is attributed to the mechanical
strain is unclear. The main point is that the distance between
the graphene layers is not obviously the thickness that is
relevant for mechanical experiments. In this paper we show
that in our simulation and theoretical analysis above a critical
thickness the ratio between the Young’s modulus and the shear
modulus changes, and, hence, an upper limit for the tube
mechanical thickness is suggested. This conclusion agrees
with our previous result, which was derived from completely
different arguments. We believe that these two independent
results, which support each other, will assist future analysis
of experimental results of mechanical experiments in CNTs.
Finally, comparison between the simulated data and the
anticipated resonance modes according to the Timoshenko
beam model gives excellent agreement for all four modes
without any fitting parameter.
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APPENDIX A: RAW DATA AND COMPARISON

We present the full set of frequencies below. We also
compare our fundamental mode frequencies as a function of
length with the only other results of this type we could find. Our
initial relaxed (7,7) SWCNTs had lengths (L) of 98.38, 147.57,
196.76, 245.95, and 295.14 Å, all with a diameter, D (= 2R) of
9.5 Å. Due to the fact that three last/first periods are frozen the
relaxed vibrating fragments of the nanotubes are 83.62, 132.81,
182.00, 231.19, and 280.38 Å long, respectively. The lengths of
the nanotubes after applied tension are presented in Table I. For
later reference we also include values of a parameter L/D in
this table. It is used by other authors to characterize nanotubes
and index the vibrations of the fundamental mode. In our
previous studies we used a parameter we call μ = R/λ, as
introduced in Ref. [14], which indexes all modes of vibration.
For the fundamental mode these are exact inverses, but μ

is a function of mode as well as nanotube geometry, and is
needed in order to exploit the extra information provided by
the four modes. The large μ values characteristic of higher
modes describe the region where only the Timoshenko beam
model [22] fits the data and the simpler EB model fails. We
return to this in our discussion below.
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TABLE I. Data sets of first four vibrational modes (in Hz) and vibrating lengths of relaxed and 2.5%, 5%, and 10% stretched armchair
(7,7) nanotubes. Dimensionless L/D values for the untensioned tube (of both the vibrating part and the entire tube) are also given.

Vibrating L/D 8.80 13.98 19.16 24.34 29.51
Complete L/D 10.36 15.53 20.71 25.89 31.07
L0

v (Å) 83.62 132.81 182.00 231.19 280.38

f1 2.77 × 1011 1.14 × 1011 5.70 × 1010 3.26 × 1010 1.63 × 1010

f2 6.67 × 1011 3.09 × 1011 1.63 × 1011 1.06 × 1011 6.51 × 1010

f3 1.16 × 1012 5.697 × 1011 3.26 × 1011 2.04 × 1011 1.38 × 1011

f4 1.68 × 1012 8.62 × 1011 5.13 × 1011 3.34 × 1011 2.28 × 1011

L2.5%
v (Å) 85.71 136.13 186.55 236.97 287.39

f1 3.17 × 1011 1.59 × 1011 1.02 × 1011 7.32 × 1010 5.90 × 1010

f2 7.16 × 1011 3.66 × 1011 2.28 × 1011 1.63 × 1011 1.26 × 1011

f3 1.20 × 1012 6.19 × 1011 3.83 × 1011 2.73 × 1011 2.04 × 1011

f4 1.75 × 1012 9.16 × 1011 5.74 × 1011 3.95 × 1011 2.97 × 1011

L5%
v (Å) 87.80 139.45 191.10 242.75 294.40

f1 3.42 × 1011 1.79 × 1011 1.24 × 1011 9.56 × 1010 7.53 × 1010

f2 7.61 × 1011 4.00 × 1011 2.65 × 1011 1.95 × 1011 1.55 × 1011

f3 1.24 × 1012 6.59 × 1011 4.21 × 1011 3.05 × 1011 2.34 × 1011

f4 1.77 × 1012 9.52 × 1011 6.12 × 1011 4.40 × 1011 3.30 × 1011

L10%
v (Å) 91.98 146.09 200.20 254.31 308.42

f1 3.76 × 1011 2.16 × 1011 1.53 × 1011 1.16 × 1011 9.36 × 1010

f2 7.87 × 1011 4.48 × 1011 3.11 × 1011 2.36 × 1011 1.91 × 1011

f3 1.25 × 1012 7.12 × 1011 4.80 × 1011 3.64 × 1011 2.93 × 1011

f4 1.78 × 1012 9.87 × 1011 6.67 × 1011 5.01 × 1011 3.99 × 1011

Our raw data are summarized in Table I. Lengths are quoted
with two significant figures after the decimal point and errors
on the frequencies are limits of reading, of ±0.005 × 1011 Hz.
In Fig. 11 we show frequency as a function of strain for the
fundamental mode for our five different lengths. The data from

FIG. 11. (Color online) Fundamental mode frequency in Hz as
a function of axial tension from our results and from Zhang et al.
[20]. The uppermost curve (dark ∗, red online) is for our smallest
L/D = 10.36 and the next curve down (◦, green online) is from
Zhang et al. with L/D = 13. The following curves are for our
successively increasing lengths [L/D = 15.53, × (turquoise online);
L/D = 20.71, � (magenta online); L/D = 25.89, � (yellow online);
L/D = 31.07, ⊕ (orange online)] with the longest at the bottom of
the graph.

the tube with the smallest L/D value appears at the top of the
graph. We also include the data from Zhang et al. [20] (read
off their graph). If we estimate L/D for our tubes using the
full length (including the six clamped periods), it fits nicely
into our sequence. We note that there is a discussion of fits to
an analytic model presented by Zhang et al. [20] that uses the
nanotube width as a free parameter, and they in fact provide
different fits for different width choices. We have shown [14]
that one needs to consider frequencies of higher modes as well
for a reliable analysis. The discussion presented by Zhang et al.
based on the shell model [21] also does not consider higher
modes under strain.

APPENDIX B: DETAILS OF TIMOSHENKO
BEAM MODEL ANALYSIS

In the main text, we based our analysis of f 2
0 vs ε

on the cancellation of 1/p2 term of Eq. (3). To be more
precise, the crossing frequencies, f0, between the interpolated
simulated results and the unstrained EB vibrational modes
should satisfy the equations (substituting full expressions for
some parameters)

1

p2

∂2u

∂ξ 2
= ω2

0mL4

EI

(
ω2

0mI

AmAeGk

)
u, (B1)

AeEεL2

EI
− ω2

0mL2

AmE

(
1 + AmE

AeGk

)
∂2u

∂ξ 2

= ω2
0mL4

EI

(
ω2

0mI

AmAeGk

)
u, (B2)

where ω0 = 2πf0. At the crossing points, the transverse beam
displacement, u(ξ ), has an analytical expression; thus, one can
multiply Eq. (B2) by u or by its even derivatives, and integrate
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over the entire beam length. The result of this analysis enables
one to obtain a more accurate estimation for E/Gk. It turns
out regardless of which function (u or its even derivatives) one
multiplies and integrates, the general outcomes is

E/Gk = (E/Gk)0
1

1 + a
, (B3)

where (E/Gk)0 is the result obtained from the requirement
that 1/p2 = 0, and a � 1. a contains ratios of derivatives,
where the denominator always consists of two additional space
derivatives with respect to the numerator. As a result, a �
1, and our approximation is better justified for the highest
crossing frequencies of each mode, f max
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